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Abstract—A machine learning algorithm for combin-
ing predictions is applied to seasonal predictions of the
NINO3.4 index from six coupled atmosphere-ocean models.
The algorithm adaptively tracks a dynamic sequence of
“best experts” and produces a probability that a partic-
ular expert is best. Averaging based on this probability
effectively yields a multi-model prediction. The algorithm
gives seasonal predictions that are more skillful than any
individual model and better than the multi-model mean.

I. MOTIVATION

Today, many institutions routinely predict the monthly
averaged weather. The question arises as to how to
combine these forecasts to produce a superior forecast
product. Numerous studies have shown that removing
the model labels and pooling the resulting forecasts
often produces accurate and probabilistically reliable
forecasts that are at least as good, or better, than more
sophisticated combination methods [1], [2], [3], [4], [5].

Here we explore a machine learning algorithm that
tracks a sequence of estimates of the best model at
each time step. The algorithm, due to Monteleoni and
Jaakkola [6], has been applied previously to climate
simulations and shown to produce better hindcasts, in
a mean square sense, than predicting with the average
over model predictions [7]. Here we show that the same
algorithm also produces good seasonal predictions.

II. METHOD

Consider M model predictions of some observable.
Let it be a discrete random variable that identifies the
“best” model at time t. Let θt denote the set of all
observations and predictions up to and including time
t. One can derive a Bayesian estimate of it based on
all data up to but not including t; i.e., p(it|θt−1). This
estimate involves assumptions about how the best model
changes with time. At the lowest level, the algorithm
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assumes a first order Markov system characterized by a
transition probability p(it+1|it;α), where α parameter-
izes the one-step transition probabilities (i.e., degree of
non-stationarity). The desired distribution can be derived
recursively from Bayes theorem as

p(it+1|θt) =
∑

it
p(it+1|it;α)e−L(it,t)p(it|θt−1)

Zt
, (1)

where Zt is a normalization constant and L(it, t) is the
negative log-likelihood of the data at time t given that
the best model is it. The scheme is initialized using
p(i1|θ0) = 1/M .

Following [7], the likelihood L(it, t) is assumed to
be proportional to the squared difference between obser-
vation and the prediction by model it at time t. Also,
the transition probability follows the Fixed-share
algorithm [8] in that the best model at the next step has
probability 1− α of remaining the best, and probability
α/(M − 1) of transitioning to another model.

If α is chosen far from the level of non-stationarity
appropriate for the system that generated the data, then
the algorithm will perform poorly [6]. Monteleoni and
Jaakkola proposed the Learn-α algorithm for learning
the value of this parameter simultaneously with learning
the best model. The algorithm effectively performs an
ensemble of updates, each member using a fixed value
of α. The resulting α-ensemble is treated as another
Bayesian estimation problem, except now the problem
is to identify the best value of α. This latter algorithm
assumes a self-transition probability of 1 and hence has
no further parameters to specify. A pseudo-code for the
entire algorithm has been published [7]. The cumulative
loss (i.e., the cumulative squared error) of the above
algorithm can be bounded relative to the cumulative loss
of the fixed-α algorithm that uses the optimal value of α,
which can only be known in hindsight (i.e. after having
seen all the data) [6]. This bound does not depend on
any distributional assumptions about the forecast errors.

III. EVALUATION

The above algorithm was applied to seasonal hindcasts
from state-of-the-art coupled atmosphere-ocean models
in the North American Multi-model Ensemble (NMME)
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[9]. We analyze models that currently are used for
forecasting and a period for which complete hindcasts
are available from the IRI portal, namely hindcasts
during 1982-2010 from: National Centers for Environ-
mental Prediction (CFSv2), Canadian Centre for Cli-
mate Modelling and Analysis (CanCM3 and CanCM4),
the Geophysical Fluid Dynamics Laboratory (CM2p1-
aer04), National Aeronautics and Space Administration
(NASA), and a joint collaboration between the Center
for Ocean-Land-Atmosphere Studies, University of Mi-
ami, and the National Center for Atmospheric Research
(CCSM3). Anomalies were computed with respect to
the climatological mean for the periods before and after
1998 separately, for reasons discussed in [10]. A model
hindcast is the mean of 6 ensemble members from that
model. We consider monthly mean NINO3.4 hindcasts.
The verification was obtained from version 2 of the
NOAA Optimum Interpolation SST [11].

Figure 1a shows that for 2.5 month lead the Learn-
α algorithm produces a smaller cumulative squared error
(“loss”) than any individual model and than the multi-
model model mean. The algorithm can perform better
than the multi-model mean because it assigns larger
weights to better models. For example, inspection of the
weights (fig. 1b) reveals that the algorithm favors differ-
ent models, or model clusters, for different years up until
the 1990s, but thereafter gradually gives most weight to
the single model that has the least loss (CanCM3).

We observe no improvement over the multi-model
mean for leads greater than 3 months (see fig. 1c).
One reason might be that NINO3.4 predictions have a
strong seasonal character, a fact that is not explicitly
taken into account by the algorithm. Moreover, for
lead times greater than one month, the performance of
previous month’s forecast is not available because the
verification needed to compute a loss still lies in the
future. Therefore, the update at time t is based on the
loss at t-minus-lead. We are currently exploring ways
to account explicitly for seasonal variations and to use
short lead errors to inform weights at long leads.
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Fig. 1. (a) Cumulative loss (i.e., cumulative squared error) for
hindcasts of monthly mean NINO3.4 at lead 2.5 months by indi-
vidual NMME models (solid), multi-model mean (black dashed),
and Learn-α (red dashed). (b) The model weights determined by
Learn-α. (c) Mean square error versus lead time. The color legend
is indicated in the bottom panel.
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